
LUCIANO ONDIR FREIRE

SIMULADOR EM TEMPO REAL DE UM VEÍCULO SUBMARINO

São Paulo

2010

LUCIANO ONDIR FREIRE

SIMULADOR EM TEMPO REAL DE UM VEÍCULO SUBMARINO

Monografia apresentada à Escola

Politécnica da Universidade de São

Paulo para obtenção do Título de

Engenheiro.

São Paulo

2010

LUCIANO ONDIR FREIRE

SIMULADOR EM TEMPO REAL DE UM VEÍCULO SUBMARINO

Monografia apresentada à Escola

Politécnica da Universidade de São

Paulo para obtenção do Título de

Engenheiro.

Área de Concentração:

Engenharia Mecatrônica e Sistemas

Mecânicos.

Orientador: Prof. Dr. Ettore

Apolônio de Barros

São Paulo

2010

FICHA CATALOGRÁFICA

Freire, Luciano Ondir

Simulador em tempo real de um veículo submarino/L.O.
Freire. – São Paulo, 2009. 69 p.

Trabalho de Formatura - Escola Politécnica da Universidade

de São Paulo. Departamento de Engenharia Mecatrônica e de
Sistemas Mecânicos.

1.Simulação em Tempo Real 2.Veículos Submarinos.
Universidade de São Paulo. Escola Politécnica. Departamento
de Engenharia Mecatrônica e de Sistemas Mecânicos II.t.

RESUMO

Este trabalho busca desenvolver um simulador em tempo real para um veículo

submarino a partir de um simulador Hardware-in-the-Loop para a navegação e controle

de um veículo autônomo submarino desenvolvido em [1], agregando mais um modelo

matemático [2] e criando uma estrutura de software flexível o suficiente para permitir a

aplicação em diversas necessidades com um mínimo de esforço por parte de um

programador. Para diminuir o esforço de desenvolvimento e de posterior manutenção

foi usada principalmente uma linguagem gráfica, a saber, MatLab Simulink. Para

conferir flexibilidade foi adotada uma estrutura de software em camadas, separando a

solução das equações de movimento, a interface com sensores e atuadores reais e a

interface com o usuário. As aplicações previstas são o apoio à decisão durante o

projeto de um submarino, apoio à identificação de parâmetros hidrodinâmicos em

ensaios com modelos em escala, apoio ao projeto de controladores (piloto automático)

e aplicação em simuladores para treinamento de pessoal.

ABSTRACT

This work seeks to develop a real-time simulator for a underwater vehicle from a

Hardware-in-the-loop simulator for an autonomous underwater vehicle developed in [1],

adding a matemathical model [2] and creating a software structure flexible enough to

allow the application of the simulator in many cases with minimum efforts of a

programmer. In order to reduce the development and a posteriori upkeep efforts, it was

used mainly a graphical language, the Matlab Simulink. To achive the necessary

flexibility it was adopted a layered software structure, separating the movement

equations resolution, the sensors and actuators interface and the human machine

interface. The possible applications are decision support during project of a underwater

vehicle, support to parameter identification experiments with scale models, controlator

design support and personnel training facilities.

ii

SUMÁRIO

1 INTRODUÇÂO .. 7

2 OBJETIVOS .. 9

2.1 Proposição de arquitetura ... 9

2.2 Implementação de um simulador de manobras 10

2.3 Implementação de um sistema de identificação de derivadas 10

3 REVISÃO BIBLIOGRÁFICA .. 12

3.1 Simulação Numérica ... 12

3.2 Simulação em tempo real .. 12

3.3 Hardware embarcado .. 14

4 METODOLOGIA .. 16

5 ARQUITETURA DE SOFTWARE .. 19

5.1 Camada de simulação ... 19

5.2 Camada de fluxo de dados .. 20

5.3 Camada de interface com o usuário .. 24

6 DESENVOLVIMENTO DA ARQUITETURA DE HARDWARE 25

6.1 Antecedentes .. 25

6.2 Arquitetura escolhida ... 26

6.3 Circuitos de condicionamento e conversão de sinais 28

6.4 Controlador de rede .. 30

6.5 Considerações de confiabilidade ... 31

6.6 Considerações de robustez mecânica... 33

6.7 Considerações sobre ruído ... 35

6.8 Confecção das placas ... 36

6.9 Software embarcado ... 36

6.10 Detalhamento dos objetos.. 39

7 IMPLEMENTAÇÃO EM MATLAB .. 47

7.1 Camada de simulação ... 47

7.2 Camada de interface com usuário ... 47

8 DISCUSSÃO ... 49

9 CONCLUSÃO .. 54

iii

Apêndice A – Convenção de Nomes e Definições ... 56

Apêndice B – modelo dinâmico .. 57

Apêndice C – Glossário do modelo dinâmico ... 60

Bibliografia .. 65

iv

LISTA DE FIGURAS

Figura 5.1 Diagrama de blocos de um simulador hardware-in-loop 19

Figura 5.2 Subcamadas da camada de fluxo de dados ... 22

Figura 6.1 Diagrama de blocos simplificado do AUV Pirajuba 28

Figura 6.2 Circuito de conversão +/-10V para 3.3V. .. 29

Figura 6.3 Circuito de conversão de 3.3V para +/-10V... 30

Figura 6.4 Circuito de habilitação do servomotor ... 30

Figura 6.5 Circuito controlador de rede .. 31

Figura 6.6 Caixa protetora dos circuitos eletrônicos ... 32

Figura 6.7 Módulo e-LPC64 e placas corroídas ... 33

Figura 6.8 Conectores Mike ... 35

Figura 6.9 Visão geral do software embarcado .. 37

Figura 6.10 Curva de tensão x descarga das baterias LIPO do AUV Pirajuba 41

Figura 6.11 Diagrama de estados do objeto control ... 43

Figura 6.12 Diagrama de estados do objeto Datalog ... 46

Figura 7.1 Leitura do giroscópio e sua integral ... 50

Figura 7.2 Ângulos de roll e pitch medidos pelo inclinômetro da bússola 51

Figura 7.3 Comparação do ângulo de leme e do yaw .. 52

Figura 7.4 Comparação da saída da bússola e da integral da saída do giroscópio 52

Figura 7.5 Leitura da rotação do eixo do motor .. 53

v

LISTA DE TABELAS

Tabela 3.1 Ferramentas usadas para simulação de manobras de veículos submarinos

 .. 12

Tabela 3.2 Ferramentas usadas para simulação hardware in the loop 13

Tabela 3.3 Ferramentas disponíveis no mercado para fazer simulação hardware in the

loop ... 13

Tabela 3.4 Arquitetura usadas em AUVs ... 14

Tabela 6.1 Equipamentos do AUV Pirajuba ... 26

Tabela 6.2 Fluxo de informações do objeto control .. 44

vi

LISTA DE ABREVIATURAS E SIGLAS

ADC Conversor analógico-digital

ARM7 Advanced RISC Machines versão 7

A/D Analógico-digital

CAN Rede de área para controle

CI Circuito integrado

DAC Conversor digital-analógico

D/A Digital-analógico

FAT Tabela de alocação de arquivos. File Allocation Table

HILS Hardware-in-the-loop simulation

IHM Interface homem-máquina

LIPO Lítio-polímero (bateria)

PCB Placa de circuito impresso

PWM Modulação por largura de pulso

RF Rádio freqüência

RPM rotações por minuto

RTW Real-Time Workshop

TTL Lógica transistor-transistor

RC Rádio controle

RF Rádio Frequência

SMD Dispositivo montado sobre superfície

SPI Interface serial com periféricos

7

1 INTRODUÇÂO

Dado o objetivo assumido pelo País de construir submarinos, incluindo aqueles

de propulsão nuclear, uma série de conhecimentos e tecnologias torna-se necessária.

Uma delas, imprescindível ainda na fase de projeto conceitual de um submarino (não

necessariamente nuclear) é prever o comportamento dinâmico das várias alternativas

propostas de projeto e verificar o atendimento aos requisitos. Em uma fase

intermediária de projeto está o desenvolvimento de algoritmos de controle para o

submarino projetado. Outra necessidade, em uma fase posterior, é a existência de

instalações para treinamento de pessoal, tais como simuladores.

Todas as necessidades acima podem ser satisfeitas com um simulador em

tempo real de um veículo submarino. Para prever o comportamento e realizar projeto

de controladores não é indispensável o uso de simuladores em tempo real, apesar de

ser um recurso valioso, pois permite a visualização tridimensional do fenômeno físico,

dando uma noção intuitiva, porém bastante útil do comportamento do veículo ou da

validade do modelo.

 A utilização de simuladores é uma técnica bastante diversificada na área de

engenharia, tanto academicamente quanto na indústria, pois a utilização de

simuladores permite realizar muitos testes em um sistema a um custo muito menor do

que o uso de modelos físicos. Durante as iterações de projeto de um submarino um

simulador encontra um uso muito importante que é a verificação das especificações de

projeto em relação à manobrabilidade do submarino inicialmente projetado.

Entretanto, uma vez que submarinos são extremamente dispendiosos tanto

financeiramente como em termos de pessoal e tempo, o uso de modelos físicos após

certa fase do projeto para refinar as estimativas das derivadas hidrodinâmicas não

pode ser prescindido. Foi observado que o tempo de ensaio de um modelo físico

também não é muito barato, e requer bastante trabalho de pós-processamento.

Considerando que tais modelos são relativamente complexos e usam muitos sensores,

existe sempre a possibilidade de haja falha (dano ou descalibração) de pelo menos um

deles durante o manuseio.

Se não houver uma realimentação da coerência dos dados obtidos durante o

ensaio, existe sempre a possibilidade de ser constatada no pós-processamento dos

8

dados uma falha nos sensores ou no modelo que comprometa todo o ensaio. Dessa

forma, viu-se que, mesmo o ensaio de um modelo físico fica enormemente facilitado e

enriquecido se comparado com simulações em tempo real.

Uma vez que a forma final do submarino a ser construído está estabelecida, faz-

se necessário fazer o projeto do controlador, de maneira a possibilitar a manutenção de

cota e de rumo, não só a baixa profundidade, onde existe a ação de ondas, como a alta

profundidade. Nesse sentido, simuladores são requeridos para fazer o ajuste das

constantes do controlador e verificar o atendimento às especificações.

Por fim, durante a fase de construção do submarino é necessário preparar o

pessoal para fazer parte da tripulação. Para isso são necessários simuladores de

grande porte que emulem o comportamento dinâmico do submarino em questão. Tais

simuladores requerem um simulador em tempo real capaz de se comunicar com

atuadores de grande porte e receber comandos da tripulação para dar aos alunos uma

experiência realista do comportamento do submarino, preparando-os da melhor

maneira possível para a operação do meio.

Este trabalho busca estabelecer uma arquitetura genérica e extensível para

satisfazer todas as necessidades ora vistas da Marinha do Brasil. Primeiramente, será

desenvolvido um simulador de manobras com a finalidade de prever a manobrabilidade

de um projeto de submarino. Nessa parte, o esforço de desenvolvimento será

basicamente a resolução das equações diferenciais de movimento. Em seguida será

feito um protótipo de um sistema para investigação de derivadas hidrodinâmicas que

seguirá uma arquitetura capaz de ser incorporada em sistemas de simulação hardware-

in-the-loop, simuladores de grande porte e veículos autônomos.

9

2 OBJETIVOS

O presente trabalho busca propor uma estrutura genérica e expansível para

atender as necessidades das várias aplicações de um simulador e fazer duas

implementações da mesma com aplicações distintas. Uma para simulação de

manobras e outra para auxílio a ensaios.

2.1 Proposição de arquitetura

O primeiro objetivo desse trabalho é propor uma arquitetura de software de

simulação em tempo real capaz de atender as múltiplas necessidades da Marinha do

Brasil. Tal arquitetura precisa ser capaz de possibilitar ou não a simulação em tempo

real, precisa ser capaz de interagir com sensores e atuadores, e ter muita flexibilidade

para apresentar os resultados da simulação.

Para que a simulação em tempo real seja garantida, uma série de cuidados deve

ser tomada, partindo do sistema operacional, que necessariamente deve ser de tempo

real. Vale lembrar que um software de tempo real não deve atender apenas a prazos

temporais, mas deve também atender requisitos de simultaneidade, previsibilidade e

robustez [30]. Para que isso seja garantido, o uso de ferramentas específicas é quase

imprescindível.

A interação com sensores e atuadores também é uma tarefa bastante complexa,

visto que existem diversos protocolos de comunicação e a necessidade de um meio

para que seja feita comunicação (ethernet, RS232, por exemplo). Logo, para que um

software seja capaz de se comunicar com um número indeterminado de sensores e

atuadores, o uso de redes de dados se torna quase obrigatório em muitos casos.

Por fim, a apresentação dos dados pode variar muito em forma e tipos. Para

fazer simulações para determinação do raio de giro, por exemplo, uma simulação

normal pode ser usada, e a apresentação deve ser feita na forma de gráficos. No caso

de simuladores de grande porte, faz-se necessário a simulação em tempo real e a

apresentação dos dados deve ser feita de maneira similar à dos indicadores de

sensores usados a bordo, de maneira a adestrar o pessoal em condições realistas.

10

Para a solução de todos os problemas listados acima, a proposição inicial é uma

arquitetura em camadas, de maneira que, para cada aplicação, sejam necessárias

apenas pequenas mudanças no software e hardware.

2.2 Implementação de um simulador de manobras

O segundo objetivo é implementar um simulador de veículos submarinos para

apoio a decisão durante a fase de projeto de um submarino seguindo a estrutura

proposta acima. Para manter a compatibilidade com modelos já amplamente utilizados,

foi implementado o modelo de [2]. Para reduzir o esforço de desenvolvimento e

adicionar confiabilidade ao simulador, partiu-se de um simulador hardware-in-the-loop

[1] já testado. Esse simulador busca a solução de equações de movimento de um

veículo submarino de massa constante em um meio infinito e estático, ou seja, na

ausência de efeitos de superfície ou de fundo, de efeitos de onda ou efeitos de

alagamento ou esvaziamento de tanques.

Entretanto, a inclusão de tais variáveis é desejável para apoiar a decisões de

projeto, e, uma vez que esse simulador visa ter um grau de expansibilidade, foi seguida

uma estrutura modular na qual existe a possibilidade de adicionar tais características

com pouco esforço de desenvolvimento.

Nessa implementação o esforço de desenvolvimento principal fica em torno da

camada de solução de equações diferenciais.

2.3 Implementação de um sistema de identificação de derivadas

O terceiro objetivo é aplicar a mesma estrutura a um sistema de identificação de

derivadas hidrodinâmicas composto de um veículo submarino e uma estação base.

Trata-se de um aperfeiçoamento de um sistema já pré-existente com o mesmo objetivo.

Serão introduzidas modificações com o objetivo de tornar o sistema mais confiável e

flexível, de modo a suportar melhor o ambiente marinho, ser capaz de integrar um

número indefinido de sensores e atuadores.

Esse sistema deve permitir a interação entre usuário e a plataforma que simula

um veículo submarino autônomo, integrar atuadores e sensores e fazer um

armazenamento de dados redundante. Uma vez que o veículo deve se deslocar em um

11

meio líquido, e ondas de rádio sofrem elevada atenuação na água, será usado um cabo

para controle remoto ligado a uma bóia. Na implementação do sistema de identificação

dinâmica a maior parte do esforço será nas camadas de fluxo de dados e interface com

o usuário.

Esse sistema não é exatamente um simulador no sentido estrito de que haja

uma solução de equações diferenciais por meio de software, mas faz uso de uma

estrutura pensada para ser usada em um ambiente de simulação interativo. Dessa

forma, mostra-se a adaptabilidade da estrutura proposta e sua ampla aplicabilidade.

Fica, por outro lado, implementado todos os elementos de um simulador genérico, a

saber, a solução de equações diferenciais, interface com o mundo físico através de

sensores e atuadores e a interface com o usuário através de uma interface gráfica.

12

3 REVISÃO BIBLIOGRÁFICA

3.1 Simulação Numérica

Primeiramente foram buscados os simuladores de manobra de submarinos

existentes. Uma vez que não existem muitos simuladores do gênero publicados, foi

incluído na busca qualquer simulador com algum grau de similaridade funcional a um

simulador de manobra de veículos submarinos. Foi verificado que os simuladores mais

antigos foram todos escritos em Fortran e geralmente faziam a simulação numérica, ou

seja, toda a trajetória do veículo era exibida na forma de um gráfico. Não podemos, no

entanto, dizer que o uso do Fortran tenha sido encerrado. Ele ainda aparece em

publicações recentes, ainda que ao lado de ferramentas mais modernas, como Maple

[3].

Tabela 3.1 Ferramentas usadas para simulação de manobras de veículos

submarinos

Ano Plataforma simulada Ferramentas Ref.
1990 Drone (veículo sob controle remoto) Fortran [4]
1992 AUV ANSI C, Prolog, Lisp e

CLIPS
[5]

2000 Theseus AUV Não menciona [6]
2000 Submarinos Fortran [7]
2000 microAUV ANSI C [8]
2007 Submarinos Maple, Fortran 77 [3]

3.2 Simulação em tempo real

De maneira geral, simulação em tempo real é usada para verificar o

funcionamento de dispositivos físicos, simulando por meio de software o

comportamento de um sistema, recebendo entradas de um controlador (hardware e

software) em fase de desenvolvimento e fornecendo as saídas para o mesmo,

mesclando nessa transmissão de informações elementos de hardware e software. O

objetivo final é ter um software e hardware totalmente validados e prontos para a

aplicação no sistema final sem por em risco os desenvolvedores ou uma plataforma de

desenvolvimento, além de economizar tempo. A esse tipo de simulação dá-se o nome

de hardware-in-the-loop (HILS ou HIL). Vale lembrar que um simulador para

treinamento de pessoal tem uma grande semelhança com esse conceito, mudando

13

apenas o fato de que o controlador é o ser humano. Devido a isso, foram pesquisadas

obras que tratam de HILS com ênfase em veículos submarinos.

Tabela 3.2 Ferramentas usadas para simulação hardware in the loop

Ano Plataforma simulada Ferramentas Ref.
2001 AUV HLA, CORESIM [9]
2003 AUV Linux, QNX [10]
2003 UAV RMUS, CommLibX [11]
2006 UAV MatLab Simulink e dSPACE [12]
2008 AUV MatLab Simulink [1]
2008 UUV MatLab Simulink e Constellation [13]
2009 AUV MatLab Simulink [14]

Nota-se a uma tendência nos trabalhos mais recentes ao uso do MatLab

Simulink. Segundo [15], havia na época (2002), cinco fabricantes diferentes de
ferramentas para desenvolvimento e simulação de sistemas embarcados, listados
abaixo.

Tabela 3.3 Ferramentas disponíveis no mercado para fazer simulação hardware

in the loop

Vendor Ferramenta Suporte
Opal-RT Ferramentas para desenvolvimento de

algoritmo e implementação rápida
MatLab Simulink e Matrixx
Autocode

XANALOG Computador para prototipar
controladores

MatLab Simulink Real-Time
Workshop

Applied
Dynamics
International

Computador para simulação em tempo
real

MatLab Simulink, Matrixx
Autocode, C, Fortran, EASY
5 e ADSIM

Quanser
Consulting

Software e hardware para criar um
ambiente de desenvolvimento
integrado de algoritmos de controle

MatLab Simulink Real-Time
Workshop

dSPACE
Inc.

Software e hardware para criar um
ambiente de desenvolvimento
integrado de algoritmos de controle

MatLab Simulink e dSPACE

Observa-se que o uso ou a compatibilidade com o Simulink está presente em

todas as ferramentas, de modo que, para desenvolvimento de sistemas embarcados e

sua simulação, o uso do Simulink e Real Time Workshop desponta quase que como a

ferramenta padrão.

14

Em acordo com o ponto de vista acima, o autor de [16] defende o uso de HILS

para redução dos custos de desenvolvimento de sistemas de tempo real. As

ferramentas que este autor propõe são o MatLab Simulink e o dSPACE. Vale ressaltar

que ele defende também o uso dessas ferramentas para automatizar a geração de

código e eliminar restrições impostas por código feito à mão em sistemas críticos.

Outra vantagem é a possibilidade de fazer testes do sistema em condições extremas,

nas quais seria muito caro usar protótipos.

Devido a essas possibilidades, HILS permite a redução do tempo de

desenvolvimento de sistemas complexos, diminuição dos custos e o aumento da

confiabilidade.

3.3 Hardware embarcado

Uma vez que um dos objetivos desse trabalho é a implementação de um sistema

de identificação de derivadas hidrodinâmicas, foi também pesquisado o atual estado da

arte em relação à arquitetura de hardware e software usada em veículos submarinos,

notadamente, em veículos autônomos, pois essa é a linha de pesquisa do laboratório e

o objetivo final dos trabalhos desenvolvidos até então. Logo, é bastante desejável

desenvolver sistemas apropriados à aplicação em veículos autônomos.

Tabela 3.4 Arquitetura usadas em AUVs

Ref. data arquitetura Sistema Operacional Rede
[17] 1994 centralizada VxWorks LONTalk
[18] 1999 Não informado Não informado CAN
[19] 2000 descentralizada Não informado CAN
[20] 2001 descentralizada QNX Ethernet
[21] 2005 descentralizada Não informado I2C, Ethernet
[22] 2006 centralizada RT-Linux I2C, ethernet
[23] 2006 descentralizada Não informado CAN
[24] 2006 centralizada Windows XP Ethernet
[25] 2007 centralizada LINUX I2C
[26] 2007 centralizada Não informado Ethernet
[27] 2008 centralizada µC/OS II CAN

15

Nessa pesquisa foram encontrados 11 artigos que descrevem sistemas similares

ao presente no laboratório e verificou-se que a maioria (pelo menos seis dentre os

onze) usa uma arquitetura centralizada, ou seja, um único computador faz todas as

tarefas, incluindo interface com sensores e atuadores. Por outro lado, existem também

várias implementações de arquiteturas descentralizadas, ou seja, em que há vários

módulos de baixo poder de processamento fazendo tarefas distintas e conversando

entre si por meio de uma rede de dados.

Quanto aos sistemas operacionais, houve uma grande variedade, não havendo

uma tendência mais forte por parte dos autores. Chamou a atenção o sistema

operacional chamado µC/OSII, que pode ser embarcado em microprocessadores de

pequeno porte, atende requisitos de tempo real e possui certificações de segurança

aeronáutica. Além disso, de acordo com [27], é bastante fácil de ser configurado e

usado, e pode ser usado gratuitamente por universidades para fins de pesquisa e

ensino.

O uso de rede de dados ficou bastante concentrado em três padrões: ethernet

(cinco autores), CAN (quatro autores) e I2C (três autores). Deve ser feita a ressalva de

que dois autores que empregam barramento I2C o fazem para sistemas de teste em

bancada. Apenas em [25] temos um veículo destinado à operação no mar a 100 metros

de profundidade que usa esse barramento.

Foi notado que em vários trabalhos [18][19][22][24][25], houve a aplicação de

microprocessadores para inicializar e configurar dispositivos, converter dados e filtrar

entradas, independentemente da arquitetura empregada.

Os autores de [18] e [19] afirmam que o uso de redes CAN aumenta a

confiabilidade de um sistema se comparado com o uso de outras redes de dados e leva

a uma redução no preço do sistema, bem como no espaço ocupado pelos cabos de

rede.

O autor de [21] afirma que o uso de ethernet apresenta como desvantagem o

grande número de cabos e o espaço requerido para o uso do hub. Esse problema

ganha proporções maiores quando se pensa em sistemas redundantes.

16

4 METODOLOGIA

Dadas as múltiplas necessidades de simulação, é necessário desenvolver uma

estrutura de software que permita que o simulador venha a ter, em versões futuras, alto

grau de confiabilidade, flexibilidade e facilidade de manutenção. Para isso, deverá ser

estruturado de maneira modular, o que sugere a separação em camadas.

Por um lado existe a necessidade de desenvolvimento de um software para

simulação de submarinos. Por outro lado, existe também a necessidade de

desenvolvimento de software embarcado no veículo submarino. Para facilitar o reuso e

a confiabilidade dos sistemas desenvolvidos, a estrutura desenvolvida deve permitir o

uso em ambas as aplicações.

Tais aplicações possuem diferenças, porém, possuem também grandes

similaridades. Ambas devem usar ferramentas específicas de tempo real por estar

envolvendo sistemas críticos cuja falha pode resultar em perdas materiais e humanas.

Ambas tratam do mesmo sistema, tendo várias variáveis e usuários comuns. Além

disso, de maneira geral, estarão em ambientes comuns, que é a presença de

atmosfera úmida e salina, pois, usualmente simuladores de treinamento de pessoal

ficam próximas ao mar e veículos submarinos, em sua maioria, são usados no mar.

Isso requer, por exemplo, especial cuidado com os circuitos eletrônicos que

compõem o sistema, pois a umidade e a contaminação iônica degradam muito a

confiabilidade de sistemas críticos. Por isso, o projeto de hardware terá uma série de

cuidados com o objetivo de melhorar a robustez do sistema desenvolvido.

Além do tempo real, ambas aplicações requerem uma interface com o mundo

físico por meio de sensores e atuadores e uma interface com o usuário, por meio de

controles e representações gráficas. Necessitam ainda de alta extensibilidade, pois o

número de sensores e atuadores é a priori, indefinido.

Pelas razões acima exposta, a linha de desenvolvimento a ser seguida será a de

uma arquitetura capaz de atender a ambas aplicações, de modo que tenhamos um

único padrão de desenvolvimento para a simulação numérica, para a simulação HIL e

para a arquitetura de controle embarcada.

Assim, busca-se a redução do tempo de familiarização dos alunos com a infra-

estrutura usada, a redução do número de componentes utilizados, o reuso e a

17

conseqüente redução no esforço de desenvolvimento juntamente com ganhos na

confiabilidade, pois aumenta-se o número de componentes de software e hardware já

extensivamente testados em várias aplicações.

Ainda com o intuito de diminuir o tempo com o treinamento de pessoal, será

tentado, sempre que possível, fazer uso de ferramentas amplamente difundidas, tais

como o MatLab, o Simulink e a linguagem C, pois esse projeto será conduzido com a

ajuda de alunos de iniciação científica, que usualmente já tem contato com essas

ferramentas. Existem ferramentas ainda mais poderosas, mas sua difusão geralmente

é mais limitada, e o tempo de treinamento para que um engenheiro atinja o seu

domínio costuma ser mais longo.

Para o desenvolvimento da solução das equações de movimento, será usado o

Simulink, pois sua natureza gráfica e modular facilita a implementação, a manutenção e

a verificação do código. Possui ainda a possibilidade de transformar modelos criados

em software capaz de rodar em tempo real por meio do Real-Time Workshop (RTW),

que é um conjunto de ferramentas integradas ao Simulink capaz de gerar código para

ser executado em um sistema operacional de tempo real e possui ainda vários drivers

de diversos tipos de rede, como ethernet e CAN. Isso significa que é possível

desenvolver aplicações no ambiente do Simulink que podem funcionar como um

software de tempo real que se comunica com diversos sensores ou atuadores por meio

de uma rede. Tudo isso com pequeno esforço de implementação de código e com fácil

manutenção.

No software embarcado, nos processadores em que não é possível usar o RTW,

será usada a linguagem C, seguindo, onde aplicável, a orientação a objetos com os

seus pressupostos, a saber, modularidade, encapsulamento de atributos e métodos e

visibilidade.

Também, em face da necessidade de clareza e facilidade de manutenção do

software criado, buscou-se seguir a filosofia Unix onde aplicável, cujas recomendações

julgadas mais importantes são: fazer módulos pequenos que façam apenas uma coisa,

que trabalhem em conjunto, com interface bem definida e projetados para uso futuro.

Para facilitar o desenvolvimento robusto do código escrito em linguagem C, foi

adotado o padrão MISRA C, que é adotado pela indústria automobilística com o

18

objetivo de tornar o código mais portável e seguro no contexto de sistemas

embarcados críticos. Esse padrão não pode ser sempre seguido à risca, mas permite

que sejam feitos pequenos desvios, desde que devidamente documentados. Busca

permitir uma fácil análise estática do código através de regras que impõem

simplicidade e clareza, além de evitar recursos e práticas que usualmente trazem

problemas ao longo prazo, como problemas de diferença entre compiladores,

corrupção de memória e fluxo imprevisível da execução do programa.

Seguindo esses padrões e essa arquitetura, espera-se pavimentar uma via

sólida que permita o fácil desenvolvimento de simuladores, de modelos livres, de HILS

e de veículos autônomos em um ambiente típico de universidade e com possibilidade

de alcançar bons níveis de confiabilidade.

19

5 ARQUITETURA DE SOFTWARE

A estrutura do software adotada será em três camadas, sendo a primeira para a

solução das equações diferenciais de movimento em tempo real, a segunda para

conversão de protocolos e fluxo de dados e a terceira para a interface com o usuário. A

seguir serão apresentadas todas as camadas do sistema com suas respectivas

características.

5.1 Camada de simulação

Essa camada funciona de maneira similar a um HILS, ou seja, por um lado

recebe as entradas ou comandos para o sistema e por outro disponibiliza as saídas ou

reação que o sistema físico a ser simulado mostraria.

Um HILS, como mostrado na figura abaixo, simula por meio de software uma

planta real para testar e validar um controlador em termos de hardware e software.

Apresenta as vantagens de facilitar o processo de desenvolvimento e diminuir o custo,

já que o seu uso dispensa boa parte dos testes com plataformas físicas, além de

diminuir o número de acidentes, aumentando a segurança. Não podemos deixar de

observar que um simulador de treinamento de pessoal tem uma função semelhante,

onde o controlador é o ser humano.

Figura 5.1 Diagrama de blocos de um simulador hardware-in-loop

A camada de simulação é o módulo central do sistema, pois terá como funções:

20

1 Simulação de sinais de sensores, inserindo ruídos e atrasos;

2 Simulação da dinâmica dos atuadores, inserindo erros e tempos de resposta;

3 Realização de todos os cálculos de dinâmica do veículo;

Operando em tempo real, possui um alto custo computacional, pois a solução

das equações de movimento do veículo deve ser obtida em uma freqüência maior do

que a do controlador. Isto ocorre devido ao critério de Nyquist, onde as freqüências dos

simuladores devem ser pelo menos duas vezes maiores do que a freqüência do

controlador, no entanto em casos práticos é recomendável que sejam de cinco a dez

vezes maiores [1]. Devido a esse fato, este módulo será usualmente implementado em

um computador de alto desempenho. Como neste módulo todas as informações da

simulação (sinais e dados) convergem e também de onde todas as informações

provêem, este módulo deve possuir um subsistema de comunicação bastante robusto.

Este subsistema deve, além de efetuar a transmissão de todas as informações em

tempo real (para isso devem ser utilizados protocolos de alto desempenho, como o

ethernet), manter todos os módulos sincronizados .

Esse módulo pode precisar atender requisitos de tempo real, ou seja, atender a

prazos de execução de tarefas, possuir estabilidade e previsibilidade. A razão é a

interatividade com sistemas reais e pessoas, pois um atraso ou um comportamento

anormal pode ser danoso ao material e ao pessoal envolvido. Dessa forma, o uso de

ferramentas de tempo real, tais como o xPC target do MatLab, para o seu

desenvolvimento é muito importante, pois possibilita o rápido desenvolvimento e uma

manutenção facilitada se comparada com ferramentas normais, como a linguagem C.

5.2 Camada de fluxo de dados

Esse módulo não necessariamente será executado em um único computador.

Dada a grande diversidade de protocolos de rede usados pelos sensores e atuadores

nos dias de hoje (por exemplo, RS232, RS485, CAN, ethernet) e interfaces (+/-10V, 4-

20mA, PWM-RC, tensão analógica), é necessário uma tradução de todas essas

linguagens para um protocolo comum e depois uma conversão para o ambiente de

simulação, que será intrinsecamente de tempo real.

21

Uma vez que o número de atuadores e sensores é, a priori, indefinido, e pode

somar um grande número, é recomendável o uso de unidades de baixo custo e poder

computacional apenas o suficiente para fazer a conversão dos dados que trafegam por

elas. O uso de sensores ou atuadores já integrados com uma rede de dados é bastante

recomendável, como usado pela indústria automotiva, que usa equipamentos com

capacidade de se comunicar em um barramento CAN. O protocolo comum de

comunicação deve ser robusto ao ambiente (resistência a corrosão, umidade,

impactos, esforços e vibração), robusto ao ruído, deve possuir uma largura de banda

que atenda ao mínimo necessário e de preferência, ser de baixo custo e fácil acesso.

A importância dessa camada está na possibilidade de inserir, no futuro, mais

sensores, atuadores ou interfaces com o usuário sem alterar a estrutura já existente.

Podemos fazer uma divisão didática dessa camada em outras subcamadas, a

saber, uma subcamada de interface com o mundo físico, uma subcamada de

conversão sinais, uma subcamada de processamento de dados, uma subcamada de

controle de rede, uma subcamada de barramento de dados e por fim uma subcamada

de conversão para o ambiente de simulação.

Na primeira subcamada, temos os sensores, que traduzem uma grandeza física

do meio para sinais elétricos, e atuadores, que atuam sobre uma grandeza física. De

maneira geral, esses elementos não trocam dados diretamente com um computador

devido às relativamente altas tensões ou correntes envolvidas. Tipicamente uma porta

lógica pode fornecer até 20 miliamperes a 5 volts, enquanto que o motor de propulsão

de um AUV pode consumir 10 amperes a 30 volts. No caso dos sensores, a relação

costuma ser inversa. As tensões de saída, geralmente da ordem de milivolts,

costumam ser bem menores do que a escala que o conversor analógico-digital possui,

que normalmente vai de 0 a 5 volts ou de 0 a 3.3 volts.

Dessa forma, para que haja o tráfego de dados, é necessária a presença de

instrumentação e condicionamento de sinal, no caso dos sensores, e de conversores

de potência, que transformam sinais de baixa tensão e corrente em sinais capazes de

causar uma atuação sobre o meio físico. Esses elementos formam a segunda

subcamada.

22

C
o
n
tr
o
le
 d
e

re
d
e

c
o
n
v
e
rs
ã
o

d
ri
v
e
rs

G
ra
n
d
e
z
a
s

fí
s
ic
a
s

b
a
rr
a
m
e
n
to

Figura 5.2 Subcamadas da camada de fluxo de dados

Os dados que chegam pela rede vem em um formato estranho aos circuitos de

conversão de potência, sendo ainda preciso uma conversão dependente do tipo do

atuador. Da mesma maneira, a saída dos condicionadores de sinal ainda está no

formato analógico e carece de uma conversão analógico-digital e de um tratamento

para ficar em um formato adequado ao tráfego na rede. Todas essas tarefas são feitas

por um microprocessador que constitui a subcamada de processamento.

23

A tarefa de inserir e recuperar dados do barramento da rede não é trivial. Uma

vez que existem vários nós na rede com igualdade de direitos, existem potenciais

problemas de colisão, que são resolvidos ou não de modo diferente por cada tipo de

protocolo. Além disso, podem haver problemas de ruídos causados por fenômenos

externos. Tal problema costuma ser atenuado por meio de checagens da transmissão.

Esses e ainda uma série de problemas não mencionados, precisam ser resolvidos em

um curto espaço de tempo, são geralmente resolvidos por recursos de hardware que

constituem a subcamada de controle de rede.

Existem atualmente no mercado muitos sensores e atuadores com mais camadas

integradas, ou seja já com a subcamada de conversão de sinais ou até a subcamada

controle de rede integrada, o que reduz o esforço de desenvolvimento e pode adicionar

maior confiabilidade com um custo financeiro maior e uma incapacidade de substituir

apenas o elemento danificado. Isso significa que um sistema atuador possa

eventualmente ter que ser trocado devido a uma pequena falha no controlador de rede.

Apesar desses inconvenientes, o emprego de sistemas com todas as subcamadas

integradas tem sido uma tendência na indústria automotiva, que usa principalmente

barramento CAN. Uma vez que tais componentes são produzidos em massa para a

indústria automobilística, eles têm boa confiabilidade e baixo custo.

A subcamada de barramento de dados é bastante simples, constituindo-se

basicamente de cabos, conectores e demais elementos que permitem a transmissão do

sinal com boa qualidade. Entretanto, são as coisas mais simples que podem impedir o

funcionamento de um equipamento. Assim é sempre recomendável seguir

rigorosamente as especificações do padrão do protocolo escolhido.

Por fim, temos a camada de conversão dos dados do barramento para o

ambiente de simulação em tempo real. No caso do xPC Target do simulink, existem já

bibliotecas prontas para vários protocolos e drivers para vários equipamentos

comerciais, tais como placas controladoras de rede ethernet ou CAN. Obviamente o

hardware compatível com as bibliotecas deve ser adquirido.

Nada impede, por exemplo, que essa conversão ser feita por meio de outro

protocolo, mas nesse caso, será necessário um maior esforço do programador.

24

5.3 Camada de interface com o usuário

Essa camada estará estruturada de maneira a possibilitar o controle e

visualização de dados provenientes de um veículo a ser simulado na primeira camada.

Tem a função de traduzir, para o usuário humano, os estados do veículo de

maneira intuitiva e direta, bem como permitir a interação do usuário e do veículo virtual.

Como o módulo de interface não é um módulo crítico para o sistema de

simulação, ele não precisa necessariamente ser implementado em tempo real, pois

pequenos atrasos na interface não mudam o entendimento do comportamento do

veículo pelo usuário. Pode, por exemplo ser implementado de modo a ser aberto um

um navegador padrão de internet. Não necessariamente haverá apenas uma

visualização, já que, estando os dados disponíveis na rede, vários usuários poderiam

visualizar algum estado da planta simulada. Isso tem relevância para um simulador de

grande porte que adestra uma equipe na qual cada indivíduo gerencia um aspecto

diferente do veículo e tem acesso a diferentes atuadores e sensores.

Como no módulo de interface não existe requisitos pesados de processamento,

ele pode ser implementado em um computador pessoal comum (baixo a médio

desempenho).

Será composto basicamente por um display gráfico e por um sistema de entrada

de comandos do usuário.

25

6 DESENVOLVIMENTO DA ARQUITETURA DE HARDWARE

De acordo com o exposto na seção de objetivos, o terceiro objetivo era a

implementação de um sistema para levantamento de derivadas hidrodinâmicas, no qual

será implementado uma versão mais completa da estrutura proposta, com as camadas

de fluxo de dados e interface com o usuário. A camada de simulação, para esta

aplicação específica está sendo substituída por um modelo físico, a saber um veículo

submarino que emula um veículo autônomo, construído para a finalidade de validar

experimentalmente teorias hidrodinâmicas.

6.1 Antecedentes

Como exibido em [14], o AUV Pirajuba possuía uma arquitetura de controle

híbrida, seguindo a arquitetura GESAM, proposta em [30]. Fazia uso de um PC104 com

sistema operacional de tempo real (QNX), um barramento ethernet, software

desenvolvido usando ferramentas gráficas (Rhapsody) e microprocessadores Rabbit

3000 como interface com os sensores e atuadores. O PC104 lia diretamente as saídas

de uma bússola eletrônica e de uma unidade de medição inercial por meio de duas

portas RS232.

Essa arquitetura, que possuía uma enorme confiabilidade de software, uma vez

que usava linguagens gráficas foi pensada para a aplicação em veículos autônomos,

que precisam resolver problemas de navegação, guiagem e controle. Na aplicação de

identificação dinâmica foram observadas algumas desvantagens, tais como um grande

número de cabos ethernet causando um certo congestionamento no limitado espaço

interno do veículo, freqüentes problemas de mal contato nos conectores RJ-45 do hub-

switch e dificuldade de acesso a componentes para reposição. Somando-se a isso,

observou-se que o aprendizado necessário para fazer uma manutenção no sistema

demandava um tempo muito longo, incompatível com o tempo disponível que um aluno

no curso de graduação fazendo iniciação científica possui.

 Abaixo, a lista de equipamentos usados no AUV.

26

Tabela 6.1 Equipamentos do AUV Pirajuba

Sistema E/S Interface Protocolo
IMU VG600AA 202 Entrada e saída RS232 binário

Saída Analógica 0 – 5V
Bússola TCM2 Entrada e saída RS232 ASCII
Servos Rádio Controle Entrada Digital PWM – RC

Saída Analógica 0,7-1,3V
Sensor Pressão MLH Saída Analógica 4-20mA
Servomotor Maxon Entrada e saída Analógica ±10V
Giroscópio KVH Saída Analógica 0-5V
Sensor de presença de líquido Saída Digital Lógica TTL
Acelerômetros ADXL Entrada e saída RS232 binário
Odômetro Doppler - DVL Entrada e saída RS232 ASCII
Modem de Rádio Frequência Entrada e saída RS232 binário

6.2 Arquitetura escolhida

Dadas as circunstâncias e os equipamentos disponíveis, percebeu-se que era

necessário o uso de microprocessadores para fazer a inicialização de alguns sensores,

fazer a conversão de protocolos, e estabelecer a interface com o usuário. O uso de

microprocessadores de 8 bits resolve quase todas as necessidades, porém não permite

uma expansão do firmware embarcado. O preço de um microprocessador de 32 bits é

similar ao de outro de 8 bits com recursos semelhantes de memória volátil e não-volátil,

porém tem mais periféricos e um poder computacional bem mais elevado por ser de

uma arquitetura mais moderna e efetuar contas de 32 bits em um único ciclo de relógio.

Foi cogitada a opção de empregar placas com processadores capazes de

embarcar sistemas operacionais tais como Linux ou QNX. Porém, não foi achado algo

que possuísse todos os periféricos requeridos para fazer a interface com os sensores e

atuadores. De maneira geral, foi observado que tais placas podem possuir conversores

analógico-digitais, geradores de PWM e conversores digital-analógicos, porém sempre

em pequena quantidade e nunca todos esses periféricos em uma única placa. Por

outro lado, essas placas possuem muitas entradas e saídas para transmissão de altas

taxas de dados, tais como ethernet e USB.

27

Foi escolhido o LPC2148 da NXP semiconductors, que possui arquitetura ARM7

e que apresentava maior relação custo-benefício em termos de memória permanente,

memória volátil e número de periféricos. Tem ainda disponibilidade imediata em

módulos produzidos no País a um baixo custo. Uma vez que esse microprocessador

possuía recursos de hardware que possibilitava a interface com todos os equipamentos

disponíveis, seria necessário apenas um modelo de hardware para todas as tarefas,

reduzindo o tempo de aprendizado dos alunos. Além disso, o poder computacional

desse hardware já permite a aplicação de filtros mais elementares e tarefas mais

complexas.

O uso de uma arquitetura centralizada foi descartado pela necessidade de, a

posteriori, introduzir novos sensores. Levando em conta as experiências anteriores com

ethernet e a análise dos autores vista na revisão bibliográfica, foi decidido, com o fim

de aumentar a confiabilidade, a robustez mecânica, diminuir o custo, diminuir o tempo

para obtenção de sobressalentes, reduzir os cabos e o volume de bordo, abandonar

por hora o uso de ethernet e adotar uma rede CAN.

Seguindo a linha proposta em [27], decidiu-se fazer uso do sistema operacional

μC-OSII, que é escrito em ANSI C, é portável para o ARM7, tem uma estrutura

bastante simples e é bastante didático para alunos de iniciação científica em termos

conceituais de sistemas operacionais. Vale lembrar que é um sistema operacional

preemptivo de tempo real certificado para equipamentos médicos e aeronáuticos, que

de acordo com o julgamento ora feito, aumentaria a confiabilidade e a facilidade de

manutenção dos softwares gerados. Podemos ainda lembrar que softwares

desenvolvidos em sistemas de plano de frente e de fundo (um laço infinito e diversas

funções de interrupção), do inglês foreground/background, não possuem modularidade,

ou seja, uma alteração em uma parte do código pode afetar o funcionamento de outra,

prejudicando muito a flexibilidade e a manutenabilidade. Com um sistema operacional

de tempo real confiável, é possível dividir cada tarefa em módulos totalmente

independentes entre si, facilitando o projeto do software, simplificando o código,

adicionando confiabilidade e facilitando a manutenção.

Dadas as limitações do número de entradas e saídas de cada unidade do

microprocessador, é necessário contar com várias unidades, distribuindo as tarefas. A

28

comunicação entre cada módulo se dará por meio de uma rede CAN. O veículo conta

com três vasos estanques onde serão colocados os equipamentos. O vaso mais a ré

será o de propulsão, que possuirá apenas o motor e um sensor de presença de líquido.

Haverá um vaso que protegerá os servos RC e o driver do servomotor de propulsão.

Neste vaso estarão montadas as superfícies de controle.

O maior vaso será chamado de principal, pois tem maior quantidade de

sensores, leva as baterias que alimentam o veículo e faz a comunicação com a estação

base.

Figura 6.1 Diagrama de blocos simplificado do AUV Pirajuba

6.3 Circuitos de condicionamento e conversão de sinais

O LPC2148 trabalha com tensões na faixa de 0 a 3.3V. Entretanto temos

equipamentos com sinais de diferentes tensões, tais como ±10V, 0-5V, 0-33V, RS232

(±15V). Para contornar esse problema foram usados amplificadores operacionais,

amplificadores de instrumentação e divisores de tensão resistivos. Os sinais de ±10V

que são fornecidos pelo driver do servomotor de propulsão foram convertidos para a

escala de 0 a 3.3V com um circuito do tipo amplificador inversor seguido de um filtro

passivo para que pudesse ser feita a A/D.

29

Figura 6.2 Circuito de conversão +/-10V para 3.3V. Monitor I é um sinal de saída

do driver e P0.10/RTS1/AD1.2 é o pino do LPC2148 que fará a conversão A/D

Para gerar a ordem de rotação para o driver de ±10V a partir do DAC do

LPC2148, foi usado um circuito de amplificação e deslocamento do sinal composto de

um INA126. O servomotor possui ainda um sinal para habilitá-lo, que impede o seu

funcionamento caso esteja a uma tensão abaixo de 4V. Uma vez que o nível alto de

tensão do microprocessador é 3.3V, foi necessário usar um transistor e um pino do tipo

dreno-aberto (quando o nível lógico é 1, o pino se comporta como se estivesse isolado;

quando o nível lógico é 0, o pino está ligado na terra) para fazer a habilitação ou

desabilitação desse atuador por software.

30

Figura 6.3 Circuito de conversão de 3.3V para +/-10V. SET+ é um sinal de

entrada do driver e P0.25/AD0.4/AOUT é o pino do LPC2148 que faz a conversão D/A

Figura 6.4 Circuito de habilitação do servomotor

Quantos aos outros sinais, foram usados divisores de tensão resistivos. Para a

conversão dos sinais TTL para RS232 foram usados circuitos integrados MAX232 em

encapsulamentos SMD.

6.4 Controlador de rede

Para fazer o controle da rede CAN, foi usado o circuito integrado MCP2515 da

Microchip, em conjunto com o transceiver MCP2551 do mesmo fabricante. Esse CI tem

dois buffers para recepção e três para transmissão. Usa um protocolo SPI com

freqüência de até 10MHz para comunicação com o microprocessador. Possui ainda um

pino que gera uma interrupção no microprocessador em caso de um evento qualquer.

Permite que os dados trafeguem no barramento CAN com freqüência de até 1MHz, o

que é bem maior do que a necessidade atual. Ao fazermos a soma de todos os dados

31

a ser transmitidos pela rede no espaço de tempo de 1 segundo, vemos que a largura

de banda utilizada é inferior a 5% da banda disponível com o barramento a 1MHz.

Devido a isso, atualmente o barramento vem sendo usado a 500kHz com o objetivo de

reduzir o número de erros.

Esse CI, após ser inicializado e propriamente configurado pelo

microprocessador, faz todo o trabalho de baixo nível preconizado pelo padrão CAN, tal

como verificação de erros das mensagens recebidas, filtragem das mensagens

indesejadas e retransmissão das mensagens perdidas. Tudo isso liberta o programador

de ter que resolver esses problemas por software, permitindo que, após a codificação

de um software de baixo nível para controlar esse CI, basta fazer uso de funções para

enviar e receber mensagens. A título de informação, a possibilidade de que passe

despercebido um único bit errado em uma mensagem CAN é da ordem de 10-14[28].

Figura 6.5 Circuito controlador de rede

6.5 Considerações de confiabilidade

Foi observada a presença de umidade dentro dos vasos de pressão da primeira

versão do veículo apesar do mesmo ter passado nos testes de estanqueidade. Uma

vez que existe a presença de muitos equipamentos eletrônicos, a exposição à água em

forma de vapor é bastante preocupante em termos de confiabilidade. Se considerarmos

que essa arquitetura se destina ao uso no mar, ainda temos a complicação da

contaminação iônica, que diminui ainda mais o tempo médio entre falhas. Para dar uma

idéia quantitativa de quanto é essa diminuição na vida do equipamento, vamos recorrer

32

ao modelo de Peck [29], que fornece o fator de aceleração da reação de oxidação de

um componente eletrônico em função da umidade e temperatura.

�� = ����
���	
.�� × ���� � �

���� �
����

 (1)

Onde:

�� = Fator de aceleração da reação.

��� = Umidade relativa no dispositivo em condições de ensaio.

��� = Umidade relativa no dispositivo em condições de uso.

��= Energia de ativação. Para circuitos integrados fica em torno de 0.7 elétrons-

volt.

��� = Temperatura no interior do dispositivo em condições de uso.

��� = Temperatura no interior do dispositivo em condições de ensaio.

 = Constante de Boltzman (k = 8.62x10-5 eV/K).

De acordo com esse modelo, para uma elevação de temperatura de 20ºC para

70ºC, teremos uma redução no tempo de vida de cerca de 10 vezes, mantendo a

umidade constante. O efeito do aumento da umidade relativa ainda é mais dramático.

Se usarmos uma atmosfera com 10% de umidade relativa como referência, teremos

uma redução de cerca de 450 vezes no tempo de vida do equipamento exposto a uma

atmosfera saturada com vapor. Ainda não foi levada em conta a contaminação iônica

devido à salinidade da água do mar.

Figura 6.6 Caixa protetora dos circuitos eletrônicos

33

Podemos então afirmar que a proteção dos circuitos eletrônicos é muito

importante se quisermos obter uma boa confiabilidade do sistema como um todo. A

primeira medida tomada foi a adoção de caixas plásticas lacráveis para isolar a

atmosfera dos componentes eletrônicos do resto do vaso de pressão. Assim, fica

efetiva a colocação de sacos de sílica para absorver a umidade local interna da caixa.

Depois, na confecção das placas de circuito impresso foram usadas trilhas de maior

largura do que o normalmente usado. Para ilustrar, a largura padrão das trilhas

normalmente usadas é 10 milésimos de polegada, enquanto a menor trilha usada foi de

30 milésimos. Assim, aumenta-se a área a ser corroída até que haja a falha.

Outra medida foi a retirada de todas as fontes de calor significativas de dentro

das caixas de proteção, tais como reguladores de tensão. O circuito que mais dissipa

calor é o próprio microprocessador, que, conforme observado em laboratório, sofre um

aquecimento muito leve devido à própria dissipação. Mais uma medida protetora será a

aplicação de verniz sobre as placas prontas, de modo a proteger as trilhas e os pinos

dos circuitos integrados da atmosfera circundante.

6.6 Considerações de robustez mecânica

Um dos problemas mais difíceis de resolver em sistemas embarcados são os

contatos elétricos de má qualidade caso sejam usados conectores inapropriados. Em

sistemas em fase de desenvolvimento isso é ainda mais crítico, pois o manuseio das

Figura 6.7 Módulo e-LPC64 e placas corroídas

34

peças é constante devido às freqüentes mudanças de configuração e testes.

Para conferir flexibilidade e facilidade de confecção das placas de circuito

impresso, foi concebido um padrão de placas auxiliares com dimensões similares à dos

módulos que contém os microprocessadores e que possuem um conector similar aos

do padrão PC-104, com um conector DIN fêmea com 64 pinos embaixo e uma barra de

pinos dupla em cima. Dessa forma, cada nó fica composto por uma pilha de placas e

todos os pinos do módulo têm acesso a todas as placas da pilha. Em outras palavras,

temos um barramento de 60 pinos (o módulo com o microprocessador possui 60 pinos)

e mais 4 pinos extras para comunicação entre as placas.

Figura 6.8 Pilha de placas com o módulo eLPC-64, placa com driver CAN, placa

serial RS232 e placa com bateria e cartão de memória

Uma vez que temos um conector com um grande número de pinos, a conexão

entre as placas fica bastante robusta, expondo cada pino, individualmente, a menores

esforços de flexão. Para deixar o sistema ainda mais robusto, e aproveitando a própria

concepção do módulo microprocessado, são passados dois parafusos sem fim com

espaçadores na extremidade oposta ao conector, deixando o sistema bastante robusto.

35

Figura 6.9 Conectores Mike

Na parede da caixa protetora foram colocados conectores padrão automotivo do

tipo MIKE com oito pinos, que possuem formato cilíndrico, o que facilita a abertura do

furo para sua colocação. Esses conectores contam com uma blindagem metálica e

molas bastante robustas. Contam ainda com rosca para garantir sua fixação e são

polarizados, ou seja, é impossível a sua colocação em uma orientação errada. Na parte

interna, os fios que saem dos conectores machos presos na parede da caixa são

soldados diretamente nas placas, eliminando a necessidade de outros conectores e a

possibilidade de falhas. Com isso espera-se reduzir o problema de contatos elétricos.

6.7 Considerações sobre ruído

Ao desenhar o PCB, alguns cuidados foram tomados para minimizar os ruídos.

Foi utilizado um plano de terra na face inferior do circuito, de forma que toda trilha de

sinal tenha uma "trilha" de terra próxima. Tomou-se cuidado para ter o menor número

possível de trilhas no plano inferior e, quando necessárias, traçadas pelos cantos da

placa para evitar divisões no plano.

Na escolha dos componentes foi dada preferência aos de encapsulamento SMD,

devido à sua menor indutância e por ficarem posicionados mais próximos à placa [31].

Os componentes foram distribuídos em zonas de mesma função, para diminuir a

interferência entre as diversas partes do circuito. O cristal do controlador CAN foi

posicionado de forma a ficar afastado dos outros componentes por ser uma importante

fonte de emissões eletromagnéticas. Os filtros dos sinais dos sensores foram

36

posicionados próximos ao conector do microcontrolador, de forma a filtrar os ruídos

captados pela trilha entre o componente e a entrada. As trilhas foram feitas com o

menor comprimento possível e as conexões ao terra foram preferencialmente feitas

diretamente ao plano da face inferior através de vias, aumentando o isolamento entre

os componentes.

Dessa forma foi possível reduzir consideravelmente os ruídos das medições, em

comparação com as placas usadas para teste, feitas sem essas precauções.

6.8 Confecção das placas

 Para a fabricação das placas foi utilizado o método de transferência térmica,

que consiste em imprimir o circuito em transparência numa impressora laser, e depois

transferir a para a placa de cobre utilizando um ferro de passar roupas.

Experimentalmente foi determinado o tempo e a temperatura para realizar a

transferência, aproximadamente 20s por face com 80% da potência máxima do ferro de

1350W. Temperaturas muito altas e tempos prolongados de aquecimento fazem com

que a transparência se deforme, borrando o desenho. Após a transferência ter sido

realizada a placa foi furada utilizando brocas de 0.9mm e as falhas foram retocadas

com canetas especiais para circuito impresso. Em seguida, as placas foram corroídas

com percloreto de ferro e envernizadas para evitar a oxidação do cobre.

A precisão obtida através desse método é consideravelmente boa para métodos

artesanais, permitindo inclusive trilhas passando entre os pinos do conector, que tem

um espaçamento de um décimo de polegada. Neste caso, as trilhas foram desenhadas

maiores do que o espaço disponível, e após terem sido transferidas ao cobre foram

raspadas à mão com um objeto de ponta bem fina e cortante para não entrar em

contato com o os pinos.

6.9 Software embarcado

Microprocessadores possuem hoje um extenso leque de opções para sua

programação com ferramentas gratuitas. A linguagem mais comum é o ANSI C. Além

disso, o sistema operacional a ser utilizado foi codificado em C. Entretanto, por se tratar

de um projeto de software que pode adquirir um tamanho considerável com o passar

37

do tempo e introdução de novas funcionalidades e equipamentos, visto que o hardware

permite alguma expansão, uma dose de disciplina na arquitetura de software se faz

necessária, no sentido de permitir a modularidade, compartimentalização e verificação

do código gerado.

A
lt
o
 n
ív
e
l

N
ív
e
l
M
é
d
io

P
e
ri
fé
ri
c
o
s

S
is
te
m
a

o
p
e
ra
c
io
n
a
l

B
a
ix
o
 N
ív
e
l

Figura 6.10 Visão geral do software embarcado

Embora a linguagem C não tenha sido feita de modo a prever o uso de modo

orientado a objetos, é possível usar alguns conceitos básicos como encapsulamento,

agrupamento simultâneo de atributos e métodos e visibilidade. Dessa forma é possível

deixar o código bastante modular e fácil de ser verificado.

Para facilitar o entendimento, os módulos de código foram divididos por função e

por nível. No gráfico abaixo, a posição vertical de um objeto indica o seu nível e a

posição horizontal indica aproximadamente os objetos com os quais ele se relaciona.

No nível de periféricos existem objetos que fazem a inicialização dos periféricos

internos do microprocessador, bem como controlam seu comportamento através de

38

seus métodos. São muito usados aqui os registradores de configuração ou de entrada

e saída de dados e o uso de linguagem binária é predominante. No modelo adotado,

cada periférico é um objeto e possui atributos, que são os estados dos periféricos em

si, e métodos, que são as funções que obtém dados ou modificam esses atributos.

Acima desse nível, o sistema operacional disponibiliza uma série de recursos

para os objetos acima, tais como semáforos, possibilidade criação de seções críticas

de código, tempos de espera, caixas de correio e temporizadores, entre outros.

Acima do sistema operacional temos as funções de baixo nível, que usam os

métodos do sistema operacional e dos objetos contendo os periféricos. Alguns, mais

complexos, como a porta serial assíncrona, usam métodos privados de interrupção

para tratar a chegada de dados. Outros, além disso, possuem uma thread própria,

como é o caso do MCP2515.

Nível acima, temos os objetos que prestam serviço aos objetos de mais alto

nível coordenando as ações de objetos inferiores e alguns fazem o controle de

periféricos externos ao microprocessador, como os sensores e o controlador CAN.

Neste nível vale ressaltar a classe sharedMemory, que providencia, para todos os

objetos acima e abaixo, todos os dados necessários, vindos pela rede ou não.

Essa classe, que possui uma instância em cada nó da rede, permite que um

objeto de nível superior possa ser facilmente transferido de um nó para outro sem

causar complicações adicionais, pois ela faz com que todas as informações estejam

disponíveis igualmente em todos os nós, exceto quando esse objeto lida com recursos

que são intrínsecos a um determinado nó.

Todos os dados obtidos por qualquer objeto é transferido para a instância local

da sharedMemory, que envia pela rede os dados apropriados e mantém armazenados

a última atualização dos dados vindos da rede. Além disso, fornece métodos que

retornam os dados necessários a cada objeto.

No nível mais alto estão as funções finais do sistema, que é o armazenamento

de dados, a realização de manobras autônomas, leituras periódicas de sensores, envio

de dados para a estação base e recepção e decodificação dos comandos enviados

pela estação base.

39

6.10 Detalhamento dos objetos

A seguir, será feita uma descrição breve dos módulos constituintes do sistema

para melhorar o entendimento da estrutura seguida. Os módulos do nível periféricos

não serão abordados por ser apenas de configuração e uso de recursos de hardware,

dispensando maiores explicações. A única exceção é o objeto BSP.

6.10.1. Objeto BSP

Do inglês, Board Support Package, oferece ao sistema operacional as funções

necessárias ao seu funcionamento, como, por exemplo uma interrupção periódica para

chamar a rotina de tick do sistema operacional. Oferece ainda uma estrutura que

permite que qualquer outro objeto tenha um método chamado a cada tick. Esse

método, que no caso não deve retornar e nem receber nenhum valor, é chamado

callback. Uma das utilidades é, por exemplo, a possibilidade de ser feita uma leitura

periódica de um sensor com alta freqüência sem requerer a existência de uma tarefa

para isso. Outra utilidade implementada por esse módulo é uma pilha de códigos de

erro. As ações de cada objeto do sistema podem falhar por uma infinidade de razões.

Para facilitar o diagnóstico da falha, foi criado um código de erros com um byte de

extensão. A cada erro ocorrido, qualquer objeto pode inserir o código correspondente

na pilha. Depois, esse código é recuperado e armazenado no objeto datalog e enviado

para a estação base.

6.10.2. Objeto FAT

Esse objeto implementa rotinas de criação, alteração, apagamento e

movimentação de arquivos em uma memória permanente formatada de acordo com o

padrão FAT. O interesse, no caso, é usar um SD-card para fazer o armazenamento de

dados obtidos pelos sensores durante o ensaio.

6.10.3. Objeto MCP2515

Faz o controle, usando os métodos do objeto SPI1, do CI que controla a rede

CAN. Implementa métodos para efetuar os comandos definidos pela interface SPI do

40

CI. Possui uma thread interna, que só é acessível por outros objetos através de

funções de callback fornecidas na inicialização do objeto. Além disso, possui uma

rotina de interrupção para reagir aos eventos de término de envio de uma mensagem e

recepção de nova mensagem. A rotina de interrupção, para evitar que a latência ou

tempo de resposta do sistema fique lenta, apenas sinaliza um semáforo para que a

thread interna do objeto faça a verificação do dispositivo e tome as medidas cabíveis.

6.10.4. Objetos refSmoother, supControl, driverMotor

O objeto supControl traduz os comandos em forma de décimos de grau para o

número binário que gerará a largura de pulso desejada, além de fazer a inicialização

dos periféricos de PWM. O objeto driverMotor usa o periférico DAC para gerar a tensão

de referência para o servomotor de propulsão, fazendo também a conversão da ordem

em RPM para o número binário apropriado. Já o objeto refSmoother, abreviado de

suavizador da referência, gera uma rampa a partir dos comandos enviados. Dessa

forma evita-se variações bruscas de torque e corrente nos atuadores.

6.10.5. Objeto bateria

O AUV Pirajuba usa baterias de lítio-polímero (LIPO), que permitem uma grande

quantidade de carga por espaço e por peso, além de uma grande corrente de

descarga. O problema é que tais baterias são bastante delicadas, requerendo

carregadores especiais e sistema de monitoração do nível, pois uma descarga

completa inutiliza a bateria.

Outro problema bastante complexo é que a tensão nos terminais da bateria varia

muito em função da corrente. Assim, para obtermos o nível real da bateria temos que

levar em conta a corrente consumida e a tensão nos terminais da bateria. Devido a

uma certa discordância entre fabricantes de baterias de LIPO, foi levantada

experimentalmente a curva do modelo presente no laboratório e que será embarcado.

41

Figura 6.11 Curva de tensão x descarga das baterias LIPO do AUV Pirajuba

O objeto bateria usa o ADC para obter a tensão nos terminais da bateria e obtém

o percentual de carga existente para as duas condições ensaiadas acima por meio de

um polinômio de segundo grau. Depois, usando a corrente do motor, adicionada do

consumo fixo do sistema, que é por volta de 400mA, faz uma interpolação linear entre

as dois percentuais obtidos.

6.10.6. Objeto SEP ou servoPosition

Na concepção original do AUV, tinha sido admitido que o servo RC teria um erro

de posicionamento desprezível. No entanto, foi verificado que o erro de posicionamento

pode chegar a até 2º sob carga, o que aumenta quando temos um eixo com

engaxetamento para permitir a atuação dos lemes por um servo dentro do vaso de

pressão. Isso é considerado excessivo para ser desprezado nos testes de identificação

dinâmica.

42

Foi descoberto que a realimentação de posição dos servos é feita por meio de

um resistor variável solidário ao eixo de saída do servo e que esse sinal poder ser

facilmente lido por um ADC do microprocessador, requerendo previamente uma

amplificação do sinal.

Esse objeto faz a leitura dos servos e as disponibiliza para o armazenamento de

dados. A leitura desses ângulos permitir verificar o desvio em função da carga e a

existência de folgas no acoplamento entre os servos e os eixos dos lemes. Em um

ensaio bastante aproximado, verificou-se que o desvio em função do momento máximo

esperado nos lemes será de cerca de 0.5º. Entretanto ainda verificou-se que o leme

sofre deflexões um pouco maiores devido à elasticidade do acoplamento que é de

plástico (cerca de 0.7º).

6.10.7. Objeto Giro

Para obter uma medida mais precisa da velocidade angular em torno do eixo

vertical, foi adicionado um giroscópio de fibra ótica, que tem uma saída de 0-5V e um

sinal de referência para compensar o erro devido ao aumento da temperatura. Para

diminuir a dispersão da leitura, são feitas múltiplas leituras a cada amostra. Além disso,

é usado o recurso de callback do BSP para efetuar uma amostra a cada tick do sistema

operacional, que no caso, roda a 100Hz.

6.10.8. Objetos TCM e IMU

Esses dois sensores se comunicam através de uma porta serial RS232 e tem

um funcionamento bastante similar. Quando o sistema é ligado, os respectivos objetos

ativam suas threads e fazem a configuração do dispositivo. Periodicamente, os

sensores enviam uma mensagem com a última leitura, sendo a freqüência de

atualização da TCM2 de 14Hz e da IMU de 50Hz. Cada objeto, ao receber uma

mensagem, checa o checksum para verificar se não há um erro na mensagem. Caso a

mensagem esteja correta, é feita a decodificação para o padrão binário. Depois disso,

os dados recebidos são enviados pelo barramento CAN via sharedMemory.

43

6.10.9. Objetos interlock e control

O interlock funciona como uma trava de segurança. Uma vez que podem haver

danos à bateria se houver uma descarga muito grande, é imperativo que os atuadores

sejam desligados caso isto aconteça. Outro problema que pode ocorrer é a perda de

comunicação com a estação base. Caso isso ocorra, será acionado uma sequência de

emergência. Para permitir que o veículo volte a receber comandos, é preciso enviar

pelo menos uma mensagem retornando ao modo ocioso.

O objeto control faz a configuração do dispositivo, verificando qual o modo de

operação atual e tomando as medidas adequadas. Funciona como uma máquina de

estados, sendo que o estado inicial é idle (ocioso), em que todos os atuadores estão

desligados.

Figura 6.12 Diagrama de estados do objeto control

Todas as transições ocorrem do estado ocioso ou para o estado ocioso, sem

exceção. Foi padronizado dessa forma para que as manobras tivessem melhor

repetibilidade. Isso implica que, ao colocarmos o sistema em qualquer um dos modos

de manobra, o veículo iniciará uma rotina pré-definida de aceleração, estabelecimento

de regime permanente, execução da manobra e posterior desligamento.

Leme padrão é o ângulo de leme em décimos de grau que o sistema usará para

efetuar as manobras. A guinada padrão é o desvio a partir do rumo inicial que o veículo

fará antes de inverter o leme na manobra de zigzag.

A montagem dos lemes não é feita em um sistema mecânico que permita

repetibilidade. Para compensar isso, é necessário um sistema de trimagem para levar

44

os lemes à posição ideal. Para facilitar, há dois (vertical e horizontal) ângulos de trim

que afetam os dois lemes colineares ao mesmo tempo, denominado “trim conjunto” e

dois ângulos de trim (inferior e esquerdo) que afetam apenas um dos lemes (trim

individual). Assim, primeiro acerta-se o alinhamento entre os lemes usando o trim

individual e depois acerta-se empiricamente qual o ângulo de trim conjunto que deixa o

veículo percorrendo uma linha reta. Obviamente, o valor exato do ângulo de trim

conjunto será determinado no modo manual, quando o usuário possui total controle

sobre o veículo.

O fluxo de informações segue a tabela abaixo:

Tabela 6.2 Fluxo de informações do objeto control

Comando Joystick idle trim prop Manual
Câmera horizontal Leme

padrão
Trim leme

inferior
Velocidade

lemes
Trim lemes

verticais
Câmera vertical Guinada

padrão
Trim leme
esquerdo

sensor Trim lemes
horizontais

Manche eixo horizontal Tempo de
aquisição

Leme
vertical

Manche eixo vertical Profundidade
padrão

Leme
horizontal

Manche eixo rotação Tempo de
aceleração

Aileron

Acelerador Velocidade
padrão

Aceleração
motor

Velocidade

Ao entrar no modo de trim, os valores dos últimos ângulos de trim conjunto são

automaticamente armazenados pelo objeto control. Nesse modo é possível alterar os

trim individuais e a velocidade padrão a ser usada pelo objeto autonomous para fazer

as manobras.

No modo “prop”, são alterados: o tempo de ensaio (Tempo de aquisição, depois

do qual o veículo é automaticamente desativado), o tempo de aceleração e

estabelecimento do regime permanente em linha reta (Tempo de aceleração), a

profundidade padrão a ser buscada, caso esteja em um modo que use manutenção de

profundidade por meio de um controlador (AZigZag, ATurn), e as inclinações das

rampas dos atuadores (velocidade dos lemes e aceleração do motor). O campo sensor

45

define o sensor a ser usado para a manobra de zigzag, que pode ser a bússola, a

integral do giroscópio ou a saída de um filtro.

6.10.10. Objeto autonomous

Esse objeto possui uma thread interna que fica desativada esperando que o

sistema entre em algum estado de manobra. Possui ainda atributos como o leme

padrão, a guinada padrão, velocidade padrão, tempo de aquisição e tempo de

aceleração que são controlados pelo objeto control com base nos comandos recebidos

da estação base. Quando efetuamos a transição para um estado de manobra, que será

necessariamente a partir do estado ocioso, com todos os atuadores desligados, a

thread aciona os lemes com os respectivos ângulos de trim, o que deverá ser o zero do

ponto de vista mecânico, aciona o motor, que deverá a ser acelerado de acordo com a

aceleração pré-estabelecida, e esperará a que o veículo atinja o regime permanente.

Após esse tempo, será iniciada a manobra definida.

Caso a manobra seja AZigZag ou ATurn, será usado um controlador para

manter a profundidade a partir das leituras do sensor de pressão.

6.10.11. Objeto Datalog

Esse objeto possui uma thread interna própria e tem como objetivo criar uma

cópia de segurança dos dados gerados no ensaio. Recupera todos os dados do objeto

sharedMemory, gera uma string no padrão ASCII, e, ao acumular mais do que 512

bytes, armazena na memória permanente que é gerenciada pelo objeto FAT, que por

sua vez usa o objeto SPI0. Também funciona como uma máquina de estados. Seus

estados são 3: Ocioso, quando armazena uma leitura do sistema por segundo;

Desligado, quando fecha o arquivo no cartão de memória e para toda atividade para

evitar danos no desligamento; e manobrando, quando armazena a 10Hz todos os

dados.

46

Figura 6.13 Diagrama de estados do objeto Datalog

6.10.12. Objeto readings
Esse objeto possui uma thread interna própria e faz a leitura das posições dos

servos (via servoPosition), lê os sensores de presença de líquido dos vasos de

propulsão e de atuadores e aquisita a corrente e a velocidade do motor via driverMotor.

Faz todas essas tarefas a 10Hz e envia, por meio do objeto sharedMemory, essas

informações pelo barramento CAN.

6.10.13. Objetos uplink e downlink
Ambos possuem uma thread interna própria. O downlink faz a leitura das ordens

vindas pela estação base e verifica se não houve perda de contato, ou seja, não recebe

mensagens válidas por um período de tempo. A cada mensagem recebida, os dados

são interpretados e enviados pela rede CAN. Seja houver uma perda de contato, é

passado um aviso para o objeto interlock, que iniciará a manobra de emergência. O

objeto uplink faz a leitura do sensor de nível de líquido, do nível das baterias e do

giroscópio e envia os dados pertinentes pela rede CAN via sharedMemory. Depois

recupera todos os dados da sharedMemory e envia via serial RS232 para a estação

base. Esse processo ocorre a 10Hz.

47

7 IMPLEMENTAÇÃO EM MATLAB

7.1 Camada de simulação

Tendo sido já proposta a arquitetura para um simulador genérico, foi feita uma

implementação de um simulador de manobras de veículos submarinos para apoiar a

decisão, partindo de um trabalho inicial [1], que já implementava HILS com um modelo

analítico e semi-empírico. Foi acrescentado um modelo comumente usado para

simulação de manobras de submarinos [2] para manter a compatibilidade com métodos

de estimação de derivadas hidrodinâmicas em uso. O modelo hidrodinâmico

implementado está detalhado no apêndice A.

Nesse software, que não requer uma interface interativa com o usuário, nem

precisa fazer a simulação em tempo real, o esforço de desenvolvimento ficou restrito à

solução das equações de movimento dentro da estrutura proposta, ou seja, usando o

MatLab Simulink de forma que se possa facilmente verificar a correção das equações e

seja fácil embarcar o código gerado em um computador através do RTW, que é uma

ferramenta de tempo real. Dessa forma foi feita uma implementação da camada de

simulação. Para o cálculo em tempo real das integrais de arrasto cruzado do modelo

proposto em [2], foi usada uma técnica chamada quadratura gaussiana.

Uma ressalva importante é o uso do modelo de propulsão descrito em [3], que

diferentemente do modelo em [2], faz correções no torque e no empuxo gerado pelo

hélice devido ao ângulo de ataque local. Esse modelo de propulsão basea-se no

método clássico para modelagem de propulsão de navios.

7.2 Camada de interface com usuário

Usando uma biblioteca para o Simulink de RS232, foi desenvolvido um software

com as seguintes funções: leitura dos dados enviados pelo software embarcado;

aquisição de comandos de um joystick típico de simuladores de vôo; arquivamento

automático de dados relevantes; e apresentação, em um ambiente de realidade virtual,

da atitude do veículo, dos ângulos de leme e de outros dados julgados relevantes para

a operação do veículo.

48

Vale ressaltar que este ambiente de realidade virtual pode ser visualizado em

navegadores padrão de internet, o que possibilita desde já a visualização de dados em

vários computadores ligados em uma rede ethernet.

49

8 DISCUSSÃO

Para o teste do simulador de manobras no meio líquido foi usado um conjunto de

derivadas hidrodinâmicas típicas de um submarino, retiradas de [3]. Para a obtenção

dessas derivadas foi criado um submarino virtual com os lemes verticais e horizontais

iguais, casco cilíndrico e vela, e por meio de CFD, foram obtidos os coeficientes. Foi

simulada uma manobra de giro sem controle de profundidade e foram obtidas as

respostas típicas de um submarino.

Quanto à implementação do sistema de auxílio a ensaios, foram feitos testes em

bancada simulando o teste a ser feito em uma piscina, por exemplo. A manobra

ensaiada foi o zigzag, sendo que foram feitas três variantes: uma com deflexões de 5º

de leme e guinadas de 5º à direita e à esquerda do rumo inicial, outra com deflexões de

10º de leme e 10º de guinada e a última com 20º de deflexões do leme e 20º de

guinada. Todos os sinais foram aquisitados a 10Hz.

A manobra constitui-se várias fases. Primeiro há um tempo de aceleração do

motor, que começa com a ativação do propulsor e termina quando o mesmo atinge a

rotação final. Depois os lemes são mantidos neutros e espera-se o veículo atingem

uma condição de regime permanente. Depois disso, é iniciada a manobra com uma

deflexão de leme levando a uma guinada para a esquerda. Quando a proa do veículo

ultrapassa o ângulo de guinada, o leme é invertido e o veículo começa a sofrer uma

aceleração angular para o outro lado, até ultrapassar o ângulo de guinada, quando o

leme é invertido novamente. Para a movimentação do veículo foi usada a força

humana.

A posição angular do leme exibida é a medição feita pelo sistema de aquisição

da posição angular dos servos que usa o potenciômetro que o próprio atuador usa para

a realimentação. Trata-se então da posição efetiva dos lemes, e não do comando

enviado. Observa-se que os atuadores tem sua velocidade angular limitada pelo objeto

refSmoother, o que diminui os trancos e picos de corrente, bem como ocasiona menor

desgaste. Verifica-se ainda que existem erros locais de posicionamento, causados

tanto pelo erro do servo, que de acordo com medidas feitas no laboratório, ficam em

torno de 0.5º, como também problemas de não linearidade do medidor, que apresenta

erros maiores a 20º.

50

Para referência foi usada a integral do giroscópio, pois o laboratório possui

muitos objetos de ferro magnetizado, tais como armários e mesas, além de aparelhos

que geram forte ruído eletromagnético, como fontes. A desvantagem é a deriva gradual

que pode ser vista durante a fase inicial do ensaio. São mostradas também as

comparações entre a integral do giroscópio e a saída da bússola eletrônica.

Figura 8.1 Leitura do giroscópio e sua integral

Como pode ser visto acima, durante o estado de repouso a integral da

velocidade angular deriva lentamente, apesar de visualmente parecer que o ruído é

bem pequeno na medida da velocidade angular. Vemos que, na guinada a velocidade

angular sofre oscilações, e isso se deve à baixa rigidez e amortecimento do atuador do

movimento do veículo, que no caso é o ser humano.

51

Figura 8.2 Ângulos de roll e pitch medidos pelo inclinômetro da bússola

Nota-se que o ângulo de pitch varia bem pouco neste caso, pois o movimento se

dá por meio de deslizamento sobre um plano. Por outro lado, o houve bastante

interferência no ângulo de roll.

A próxima figura faz uma comparação do ângulo de leme e do yaw, e exibe

algum ruído na medição da deflexão dos lemes. Note que a inversão dos lemes se dá

no ponto quase exato em que o yaw passa por +/- 5º.

52

Figura 8.3 Comparação do ângulo de leme e do yaw

Figura 8.4 Comparação da saída da bússola e da integral da saída do

giroscópio

53

Observe que para um dos lados a saída da bússola acompanha melhor a

integral do giroscópio do que para outro. Isso se deve a uma fonte local de distúrbio

magnético, a saber, um armário de ferro ao lado do veículo. Observa-se também picos

de ruído de até 1º, provavelmente causados pelos equipamentos do laboratório. Em

laboratório, pode ver que as medições de campo magnético ficam bastante

comprometidas.

Figura 8.5 Leitura da rotação do eixo do motor

Na leitura da rotação do eixo do motor, observa-se um pequeno ruído e alguma

histerese.

54

9 CONCLUSÃO

O estabelecimento de uma estrutura de software permite que o desenvolvimento

e manutenção do código sejam feitos de maneira mais segura e uniforme,

independendo do número de pessoas envolvidas no projeto.

Uma estrutura genérica pode ser demasiadamente complexa para uma

aplicação específica, mas dentro de um contexto institucional, ou seja, quando o código

passa pelas mãos de mais de uma pessoa durante o ciclo de vida, a adoção de uma

estrutura é bastante recomendável.

A separação em camadas fornece, no caso, um grande potencial de

modularidade e flexibilidade. A estrutura ora usada permite grande variação de uso em

veículos submarinos com pequenas alterações no código. As aplicações previstas são:

simulação de manobras para verificação de requisitos; simulação para verificar o

desempenho de controladores; controle de veículos, caso em que seriam usadas

apenas as camadas de fluxo de dados e interface com o usuário; simulação hardware-

in-the-loop para validar ao mesmo tempo o software e o hardware de um controlador;

simulação em centros de treinamento de pessoal; e aplicação em veículos autônomos,

caso em que seria usada parte da camada de fluxo de dados.

A exeqüibilidade de um projeto em termos institucionais também é muito

importante. Um determinado recurso pode ser possuidor de vantagens técnicas

enormes, porém, para que seja virtualmente inútil, basta que ele tenha um dos

seguintes atributos: excessivamente caro; disponibilidade reduzida, tempo de

familiarização muito longo.

Existem também ao longo do trabalho preocupações no sentido de aumentar a

confiabilidade do sistema como um todo, levando em conta o ambiente ao qual um

veículo submarino é exposto. Na parte de hardware, essa preocupação se traduziu na

preocupação de implementar um sistema mecanicamente robusto e na preocupação de

isolar os equipamentos eletrônicos da atmosfera do meio ambiente. Na parte de

software, foi seguido um certo rigor para o desenvolvimento de modo a manter as

características de tempo real, a saber, resposta temporal, simultaneidade,

previsibilidade e robustez. No sentido de manter o código portável foi seguido até certo

ponto o padrão MISRA C.

55

Uma possibilidade ainda não explorada é a expansão do sistema com um

hardware compatível com o RTW com capacidade para se comunicar em uma rede

CAN. Dessa forma seria possível, com pequeno esforço de desenvolvimento, permitir a

interação do sistema com filtros para obtenção precisa de dados, como posição,

orientação e velocidade. Outra possibilidade ainda não mencionada é a interação de

atuadores e sensores de forma que se tenha uma plataforma que mude sua atitude de

acordo com a saída de um simulador, e dentro dessa plataforma um conjunto de

sensores, filtros e controlador enviam comandos para o veículo simulado, dessa forma

não validando apenas o controlador, mas o conjunto completo.

56

APÊNDICE A – CONVENÇÃO DE NOMES E DEFINIÇÕES

Tick – unidade de tempo que o sistema operacional espera para verificar se

existe uma tarefa de maior prioridade pronta para ser ativada. Também se aplica à

rotina chamada para fazer essa verificação.

Checksum – um ou dois bytes que contém a soma ou o “ou exclusivo” de todos

os bytes que compõem a mensagem

57

APÊNDICE B – MODELO DINÂMICO

!"#� + �#�%&'() + *+,'- = *�,'- + *.,', 0- + *1 + *2 + *3

Onde:

' = 45 6 7 9 : ;<3, ou seja, as velocidades lineares e angulares do centro do

referencial fixo ao corpo do veículo.

"#� =
=>
>>
>>
? @ 0 0 0 @B1 −@D10 @ 0 −@B1 0 @E10 0 @ @D1 −@E1 00 −@B1 @D1 FGG −FGH −FGI@B1 0 −@E1 −FGH FHH −FHI−@D1 @E1 0 −FGI −FHI FII JK

KK
KK
L

O termo �#� refere-se à massa de água que o veículo acelera junto ao seu corpo devido

à componente viscosa do arrasto e é enunciada da seguinte forma [14]:

�#� =

=>
>>
>>
?M�(0 0 0 0 00 NO(0 NP(0 NQ(0 0 RS(0 RT(0

0 UO(0 UP(0 UQ(0 0 "S(0 "T(0
0 VO(0 VP(0 VQ(JK

KK
KK
L

O termo *+,'- representa as forças inerciais que dependem das velocidades lineares e

angulares e são enunciadas da seguinte maneira:

58

*+,'- = @

=>
>>
>>
?−6. ; + 7. : − E1,:
 + ;
- + D1 . 9. : + B1 . 9. ;
−7. 9 + 5. ; − D1,;
 + 9
- + B1 . :. ; + E1 . 9. :
−5. : + 6. 9 − B1,9
 + :
- + E1 . 9. ; + D1 . :. ;

D1,−5. : + 6. 9- − B1,−7. 9 + 5. ;-
B1,−6. ; + 7. :- − E1,−5. : + 6. 9-
E1,−7. 9 + 5. ;- − D1,−6. ; + 7. :- JK

KK
KK
L

+

=>
>>
>>
? 000WFII − FHHX. :. ; − FGI . 9. : + FHI,;
 − :
- + FGH. 9. ;

,FGG − FII-. 9. ; − FGH. :. ; + FGI,9
 − ;
- + FHI . 9. :
WFHH − FGGX. 9. : − FHI . 9. ; + FGH,:
 − 9
- + FGI . :. ;JK

KK
KK
L

O termo *1 e *2 representam a força da gravidade e do empuxo, respectivamente,

depois de feitas as transformações para o sistema de referência solidário ao corpo e é

enunciado abaixo:

*1 = @. Y.

=>
>>
>>
? −sin ,]-

sin,^- . cos ,]-
cos,^- . cos ,]-

D1 . cos,^- . cos ,]- − B1 . sin,^- . cos ,]-
−E1 . cos,^- . cos,]- − B1 . sin ,]-
E1 . sin,^- . cos,]- + D1 . sin ,]- JK

KK
KK
L
 e

*2 = a. Y. ∇

=>
>>
>>
? sin ,]-

−sin,^- . cos ,]-
− cos,^- . cos ,]-

−D2 . cos,^- . cos,]- + B2 . sin,^- . cos ,]-
E2 . cos,^- . cos,]- + B2 . sin ,]-

−E2 . sin,^- . cos,]- − D2 . sin ,]- JK
KK
KK
L
,

onde ∇ é o volume do veículo.

O termo *�,'- representa as forças hidrodinâmicas aplicadas ao casco em função das

velocidades lineares e angulares, enunciadas abaixo, sendo a a densidade do fluido:

59

*�,'- =

= a
2

=>
>>
>>
>>
>>
>>
>>
>>
>>
>>
?deWM′TT:
 + M′QQ;
 + M′QP;9X+dgWM′OQ6; + M′ST7:X+d
,M′OO6
 + M′SS7
-
deWN′P|P|9|9| + N′PT9:X+dgWN′�Q5; + N′�P59 + N′SP79X
 +d
 iN′∗5
 + N′O56 + N′O|O|k6 l,6
 + 7
-m
ln +o� pℎ,E-6,E-,6
,E- + 7
,E--m
 rE

s
dgWR′T5: + R′OP69X+d
 iR′∗5
 + R′S57 + R′|S|5|7| + R′SS l7,6
 + 7
-m
ln
 −o� pt,E-7,E-,6
,E- + 7
,E--m
 rE

sduWU′TQ:; + U′P|P|9|9|X+deWU′P59 + U′Q5; + U′SP79X+dg,U′∗5
 + U′Ok56-
 +dg,5
 + 6v
 + 7v
-wv
xU′evsin ,4^v- + U′zvsin ,8^v-| − U}
du"′QP;9 + de"′T5: + o� pEt,E-7,E-46
,E- + 7
,E-<m
 rE

s
 dg i"′∗5
 + "′S57 + "′S|S|k7 l,6
 + 7
-m
l + "′|S|5|7| + "′SS l7,6
 + 7
-m
ln
duV′PT9: + deWV′P59 + V′Q5;X + dg iV′∗5
 + V′O56 + V′O|O|k6 l,6
 + 7
-m
ln
 +o� pEℎ,E-6,E-,6
,E- + 7
,E--m
 rE

s JK
KK
KK
KK
KK
KK
KK
KK
KK
KK
L

O termo *.,'- representa as forças hidrodinâmicas aplicadas ao veículo em função das

velocidades lineares e angulares e deflexões de superfícies de controle, enunciadas abaixo,

sendo a a densidade do fluido:

*.,', 0- = a
2

=>
>>
>>
>>
>>
>?
d
,M′~Q~Q5
0;
 + M′~�~�5
0�
+M′~�~�5
0t
-
d
 iN′~Q5
0; + N′~Q�5
0; i� − 1

on on
d
 iR′~�5
0� + R′~�5
0t + R′~��5
0� i� − 1

on on
dg iU′~Q5
0; + U′~Q�5
0; i� − 1

on on
dg i"′~�5
0� + "′~�5
0t + "′~��5
0� i� − 1

on on
dg iV′~Q5
0; + V′~Q�5
0; i� − 1

on on JK
KK
KK
KK
KK
KL

60

APÊNDICE C – GLOSSÁRIO DO MODELO DINÂMICO

Como mostrado na figura acima, todas as grandezas são refenciadas solidariamente ao
veículo.

xE1 , D1 , B1| Coordenadas do centro de gravidade no referencial solidário ao veículo xE2 , D2 , B2| Coordenadas do centro de empuxo no referencial solidário ao veículo FGG, FHH, FII Momentos de inércia no eixo x, y e z FGH, FGI , FHI Produtos de inércia nos planos xy, xz e yz
u Componente da velocidade linear do veículo no eixo x
v Componente da velocidade linear do veículo no eixo y

6v Componente da velocidade linear do leme horizontal de ré do veículo no eixo y
w Componente da velocidade linear do veículo no eixo z

7v Componente da velocidade linear do leme horizontal de ré do veículo no eixo z
ΘS Ângulo de ataque Θ no leme horizontal de ré do veículo ϕS Ângulo de incidência ϕ no leme horizontal de ré do veículo
p Componente da velocidade angular do veículo no eixo x
q Componente da velocidade angular do veículo no eixo y
r Componente da velocidade angular do veículo no eixo z
X Componente da força hidrodinâmica aplicada no veículo no eixo x
Y Componente da força hidrodinâmica aplicada no veículo no eixo y
Z Componente da força hidrodinâmica aplicada no veículo no eixo z
K Componente do momento hidrodinâmico aplicado no veículo no eixo x
M Componente do momento hidrodinâmico aplicado no veículo no eixo y
N Componente do momento hidrodinâmico aplicado no veículo no eixo z]^� Angulos de Euler M�(Coeficiente de massa adicional em 5(devido à variação de u NO(Coeficiente de massa adicional em 6(devido à variação de v NP(Coeficiente de massa adicional em 6(devido à variação de p NQ(Coeficiente de massa adicional em 6(devido à variação de r RS(Coeficiente de massa adicional em 7(devido à variação de w RT(Coeficiente de massa adicional em 7(devido à variação de q

61

UP(Coeficiente de massa adicional em 9(devido à variação de p UO(Coeficiente de massa adicional em 9(devido à variação de v UQ(Coeficiente de massa adicional em 9(devido à variação de r "S(Coeficiente de massa adicional em :(devido à variação de w "T(Coeficiente de massa adicional em :(devido à variação de q VO(Coeficiente de massa adicional em ;(devido à variação de v VP(Coeficiente de massa adicional em ;(devido à variação de p VQ(Coeficiente de massa adicional em ;(devido à variação de r

M′TT = MTTade
2

 Derivada adimensional da força hidrodinâmica no eixo x devido a :

M′QQ = MQQade
2

 Derivada adimensional da força hidrodinâmica no eixo x devido a ;

M′QP = MQPade
2

 Derivada adimensional da força hidrodinâmica no eixo x devido a ; ∗ 9

M′OQ = MOQadg
2

 Derivada adimensional da força hidrodinâmica no eixo x devido a 6 ∗ ;

M′ST = MSTadg
2

 Derivada adimensional da força hidrodinâmica no eixo x devido a 7 ∗ :

M′OO = MOOad

2

 Derivada adimensional da força hidrodinâmica no eixo x devido a 6

M′SS = MSSad

2

 Derivada adimensional da força hidrodinâmica no eixo x devido a 7

U3 Empuxo gerado pelo hélice

N′P|P| = NP|P|ade
2

 Derivada adimensional da força hidrodinâmica no eixo y devido a 9|9|
N′PT = NPTade

2
 Derivada adimensional da força hidrodinâmica no eixo y devido a 9:

N′�Q = N�Qadg
2

 Derivada adimensional da força hidrodinâmica no eixo y devido a 5;

N′�P = N�Padg
2

 Derivada adimensional da força hidrodinâmica no eixo y devido a 59

N′SP = NSPadg
2

 Derivada adimensional da força hidrodinâmica no eixo y devido a 79

N′∗ = N∗ad

2

 Derivada adimensional da força hidrodinâmica no eixo y devido a 5

62

N′O = NOad

2

 Derivada adimensional da força hidrodinâmica no eixo y devido a 56

N′O|O|k = NO|O|kad

2

 Derivada adimensional da força hidrodinâmica no eixo y devido a 6 �,6
 + 7
-�
��

R′T = RTadg
2

 Derivada adimensional da força hidrodinâmica no eixo z devido a 5:

R′OP = ROPadg
2

 Derivada adimensional da força hidrodinâmica no eixo z devido a 69

R′∗ = R∗ad

2

 Derivada adimensional da força hidrodinâmica no eixo z devido a 5

R′S = RSad

2

 Derivada adimensional da força hidrodinâmica no eixo z devido a 57

R′|S| = R|S|ad

2

 Derivada adimensional da força hidrodinâmica no eixo z devido a 5|7|
R′SS = RSSad

2
 Derivada adimensional da força hidrodinâmica no eixo z devido a �7,6
 + 7
-�

��
U′TQ = UTQadu

2
 Derivada adimensional do momento hidrodinâmico no eixo x devido a :;

U′P|P| = UP|P|adu
2

 Derivada adimensional do momento hidrodinâmico no eixo x devido a 9|9|
U′P = UPade

2
 Derivada adimensional do momento hidrodinâmico no eixo x devido a 59

U′Q = UQade
2

 Derivada adimensional do momento hidrodinâmico no eixo x devido a 5;

U′SP = USPade
2

 Derivada adimensional do momento hidrodinâmico no eixo x devido a 79

U′∗ = U∗adg
2

 Derivada adimensional do momento hidrodinâmico no eixo x devido a 5

U′Ok = UOkadg
2

 Derivada adimensional do momento hidrodinâmico no eixo x devido a 56

U} Torque gerado pelo hélice

63

"′PQ = "PQadu
2

 Derivada adimensional do momento hidrodinâmico no eixo y devido a 9;

"′T = "Tade
2

 Derivada adimensional do momento hidrodinâmico no eixo y devido a 5:

"′∗ = "∗adg
2

 Derivada adimensional do momento hidrodinâmico no eixo y devido a 5

"′S = "Sadg
2

 Derivada adimensional do momento hidrodinâmico no eixo y devido a 57

"′S|S|k = "S|S|kadg
2

 Derivada adimensional do momento hidrodinâmico no eixo y devido a 7 �,6
 + 7
-�
��

"′|S| = "|S|adg
2

 Derivada adimensional do momento hidrodinâmico no eixo y devido a 5|7|
"′SS = "SSadg

2
 Derivada adimensional do momento hidrodinâmico no eixo y devido a �7,6
 + 7
-�

��
V′PT = VPTadu

2
 Derivada adimensional do momento hidrodinâmico no eixo z devido a 9:

V′P = VPade
2

 Derivada adimensional do momento hidrodinâmico no eixo z devido a 59

V′Q = VQade
2

 Derivada adimensional do momento hidrodinâmico no eixo z devido a 5;

V′∗ = V∗adg
2

 Derivada adimensional do momento hidrodinâmico no eixo z devido a 5

V′O = VOadg
2

 Derivada adimensional do momento hidrodinâmico no eixo z devido a 56

V′O|O|k = VO|O|kadg
2

 Derivada adimensional do momento hidrodinâmico no eixo z devido a 6 �,6
 + 7
-�
��

0; Deflexão do leme vertical em radianos 0t Deflexão do leme horizontal de vante em radianos 0� Deflexão do leme horizontal de ré em radianos � Rendimento da superfície de controle
C Fator de escala 7,E- Velocidade local w em x do casco 6,E- Velocidade local v em x do casco ℎ,E- Altura (calado) do casco do veículo em x t,E- Largura (boca) do casco do veículo em x

64

o� Coeficiente de arrasto

65

BIBLIOGRAFIA

[1]. DANTAS J. L. D., “Hardware in the Loop para a Simulação do Sistema de
Navegação e Controle de Veículos Autônomos Submarinos”, Trabalho
de Conclusão de Curso, Escola Politécnica da Universidade de São Paulo,
São Paulo, Brasil, 2008.

[2]. FELDMAN J., “DTNSRDC Revised Standard Submarine Equations of
Motion”, Report of DTNSRDC/SPD-0393-09, 1979.

[3]. WATT, G. D., Modeling and simulating unsteady six degrees of freedom
submarine rising maneuvers, Technical Report, Defense Research and
Development Canada, 2007.

[4]. MARKOV, A. B., A nonlinear six Degree-of-freedom flight simulation
model v. 2: software documentation, Technical Report, Defense Research
and Development Canada,1990.

[5]. BRUTZMAN D. P.,KANAYAMA Y. E ZIDA M. J “Integrated Simulation for
Rapid Development of Autonomous Underwater Vehicles”, Proceedings
of the IEEE Symposium on Autonomous Underwater Vehicle Technology, p
3-10, 1992.

[6]. SETO, M. L.; WATT, G. D., Dynamics and control Simulator for Theseus
AUV, Defense Research and Development Canada, 2000.

[7]. ISE RESEARCH LIMITED, SUBMO3: A Frequency domain simulation tool
for submarine motion in waves, and its use with maneuvering models,
Defense Research and Development Canada, 2000.

[8]. LEPAGE Y. G. E HOLAPPA, K.W., “Simulation and control of an
autonomous underwater vehicle equipped with a vectored thruster”,
OCEANS 2000 MTS/IEEE Conference and Exhibition, p. 2129-2134 v. 3,
2000.

[9]. LANE D. M., FALCONER G. J., Randall G., “Interoperability and
Synchronisation of Distributed Hardware-in-the-Loop Simulation for
Underwater Robot Development: Issues and Experiments”, International
Conference on Robotics & Automation, IEEE, Seoul, Korea, 2001.

[10]. SONG, F., AN, P. E., FOLLECO, A., “Modeling and Simulation of
Autonomous Underwater Vehicles: Design and Implementation”, Journal
of Oceanic Engineering, IEEE, vol. 28, no. 2, 2003.

[11]. GÖKTOGAN A. H., NETTLETON E., RIDLEY M., SUKKARIEH S., “Real
Time Multi-UAV Simulator”, International Conference on Robotics &
Automation, IEEE, Taipel, Taiwan,2003.

66

[12]. SHIXIANJUN, JIAKUN S., HONGXING L., “Hardware-in-the-Loop
Simulation Framework Design For a UAV Embedded Control System”,
Chinese Control Conference, IEEE, Harbin, Heilongjiang, 2006.

[13]. DA SILVA, H. M., “Simulação com Hardware in the loop Aplicada a
Veículos Submarinos Semi-Autônomos”, Dissertação (Mestrado), 2008,
Tese (Doutorado), Escola Politécnica, Universidade de São Paulo, São
Paulo, 2008.

[14]. DANTAS, J. L. D., de BARROS, E. A., “A real-time simulator for AUV
development”, Proceedings of COBEM 2009, 20th International Congress of
Mechanical Engineering, Gramado-RS, Brasil, 2009.

[15]. ANAKWA W.K. [ET AL.] “Environments For Rapid Implementation Of
Control Algorithms And Hardware In The Loop Simulation”, IECON
Proceedings (Industrial Electronics Conference), v 3, p 2288-2293, 2002

[16]. MACLAY D. “Simulation gets into the loop”, IEE Review, v. 43, n. 3, p.
109, May 15, 1997.

[17]. SMITH, S. M., “An Approach to Intelligent Distributed Control for
Autonomous Underwater Vehicles”, Proceedings of the IEEE Symposium
on Autonomous Underwater Vehicle Technology, p 105-111, 1994.

[18]. ORTIZ, A., “Improving the safety of AUVs”, OCEANS ’99 MTS/IEEE, v. 2,
p. 979-984, 1999.

[19]. OLIVER, G. et al., “RAO: a low cost AUV for testing”, OCEANS 2000
MTS/IEEE Conference and Exhibition, v. 1, p 397-401, 2000.

[20]. MARCO, D. B., HEALEY, A. J., “Comand, Control and Navigation
Experimental Results with the NPS ARIES AUV”, IEEE Journal of Oceanic
Engineering, v. 26, N. 4, p 466-476, 2001.

[21]. WANG, I. et al., “Modular Hardware Infrastructure fo Autonomous
Underwater Vehicles”, OCEANS 2005. Proceedings of MTS/IEEE, v. 3, p
2652-2655, 2005.

[22]. WATANABE, K., “An AUV Based Experimental System for the
Underwater Technology Education”, OCEANS 2006-Asia Pacific, p 1-7,
2007.

[23]. ZHANG, H. W. et al., “CAN bus based control system for autonomous
underwater vehicle”, Jiqiren/Robot, v. 28, n. 4, p 448-452, 2006. Em língua
chinesa.

[24]. CUFF, T. R., WALL, R.W., “Support Platform and Communications to
Manage Cooperative AUV Operations”, OCEANS 2006-Asia Pacific, 2007.

67

[25]. ACOSTA, G. G., “Low-cost Autonomous Underwater Vehicle for
pipeline and cable inspections”, International Symposium on Underwater
Technology, UT 2007 - International Workshop on Scientific Use of
Submarine Cables and Related Technologies 2007, p 331-336, 2007.

[26]. HASSAAN KHALID, M. et al., “FATCAR-AUV: Fault tolerant control
architecture of AUV”, Proceedings of International Bhurban Conference on
Applied Sciences and Technology, IBCAST, p 161-167, 2007.

[27]. ZHANG, L. et al., “Design and experiment of automatic pilot for long
range AUVs”, 2008 3rd IEEE Conference on Industrial Electronics and
Applications, p 1824-1827, 2008.

[28]. VOSS, W., “A Comprehensible Guide to Controller Area Network”, 2nd
ed., Greenfield, Massachusetts, United States of America, Copperhill Media
Corporation, 2005, 176 p.

[29]. OKURA, J. H., “Metodologia de qualificação de componentes
eletrônicos”, 1995, 176 p. Dissertação (Mestrado) – Faculdade de
Engenharia Elétrica, Universidade Estadual de Campinas, Campinas, 1995.

[30]. AMIANTI, G., “Arquitetura de software aviônico de um VANT com
requisitos de homologação”, 2008, 278 p. Dissertação (Mestrado) – Escola
Politécnica da Universidade de São Paulo, Universidade de São Paulo, São
Paulo, 2008.

[31]. TEXAS INSTRUMENTS INC., “PCB Design Guidelines for Reduced
EMI”, Application Report,1999, 23 p.

